How Is the Automotive Industry Handling the New Industrial Revolution?

Bill Gates is alleged to have once quipped that “If GM had kept up with technology like the computer industry has, we would all be driving $25 cars that got 1,000 MPG.” Even though the authenticity of this quote is questionable, it has been circulated throughout the internet for years because there is something about the sentiment that rings true to us. It certainly does not seem that the automotive industry has kept up with advancing technology the way that the computer industry has.

This may be due in part to the manufacturing infrastructure that has evolved over the years. Making sweeping upgrades to equipment and/or processes seems a very expensive and risky proposition. When you couple this with the fact that many automobile manufacturers today struggle to find enough demand for their current supply, it is easy to understand why keeping up with the latest technology isn’t always a top priority.

The problem with this reluctance, though, is that automobiles are not inexpensive consumables that people buy casually. Customers expect vehicles to come with the highest standards of safety and efficiency. Customers expect the latest technology possible. How can manufacturers keep up with this demand for innovation without changing their processes?

It seems that some manufacturers are beginning to embrace the ways of the modern industrial world, and are finding ways to align their business models with the current wave of interconnectivity and streamlined automation.

Honda Manufacturing of Alabama

Honda’s largest light truck production facility in the world – a 3.7 million square foot plant – was faced with a problem all too common to large manufacturing facilities. Over the years, a number of different automation systems were introduced to help streamline production. With operations including blanking, stamping, welding, painting, injection molding, and many other processes involved in producing up to 360,000 vehicles and engines per year, it is not surprising that they found themselves struggling to integrate PLCs from multiple manufacturers, multiple MES systems, analytic systems, and database software from different vendors.

Of course, on top of these legacy systems, Honda continued to layer an array of smart devices on the plant floor and embed IT devices in plant equipment. The complexity introduced by this array of automation systems turned out to be slowing down the operations they were intended to streamline.

After reorganizing their business structure to merge IT and plant floor operations into a single department, Honda proceeded to deploy a new automation software platform that enabled them to bring together PLC data with the data coming from MES and ERP systems into a common interface that allowed the entire enterprise to be managed through a single system. This also allowed Honda to manage and analyze much larger data sets that revealed new opportunities for further optimization. While this reorganization required a significant investment of resources, they were able realize benefits immediately, and ultimately positioned themselves to maintain a competitive edge through the next decade or more.

Ford Motor Co.

Ford Motor Company operates a global network of manufacturing operations, and have had difficulty when trying to promote collaboration and share best practices between their various plants. They found a solution using technology based on the Google Earth infrastructure.

Ford was able to develop a cloud-based application that stores 2D and 3D representations of Ford’s global manufacturing facilities, and allows users to navigate through these virtual environments, place pins, and upload video, images and documents to these pins that are shared throughout Ford’s global operations. Engineers and operators can share information about current plant conditions and procedures, which can be accessed in real time from anywhere in the world. The accumulated data can be used for training or to update standard procedures. By creating a global collaborative tool, Ford has created a means of ensuring that each and every one of their employees has the latest, most accurate information on how to best perform a particular task or how to avoid a problem that was encountered elsewhere.

We will have to see in coming years whether or not these innovations will lead to improved market performance for either of these manufacturers, but in the meantime it is probably safe to expect other companies to follow suit. With the advances in manufacturing technologies and machine-to-machine communication, it is becoming very difficult to remain competitive without playing by the same rules as everyone else. Industrial technology has advanced to the point that we are experiencing what people refer to as a new industrial era – or Industry 4.0. Reluctance is no longer a viable option.

Film Radiography is Declining in Industrial Testing Applications

DODGED THE DIGITAL DILEMMA

The shift from analog to digital technology has given a new lease of life for NDT applications in the industrial radiography market, thus, broadening the scope beyond traditional applications. Digital X-ray systems are proliferating with increased acceptance across all industry verticals, including highly regulated and traditionally conservative aerospace and automotive industries. The most significant contributing factor for this paradigm shift to digital X-ray systems is the cost-saving, which is 5-6 times more (in both computed and direct radiography) when compared to film-based systems. The shift is also being fueled by the bridge of gap by digital systems when it comes to high-resolution images, which used to be a niche for film radiography. Megatrends, such as Industry 4.0, Industrial Internet of Things, and Big Data, are expected to progressively phase out radiography on film.

ADVENT OF PORTABLE RADIOGRAPHY EQUIPMENT

The industry is experiencing significant influx of portable equipment in the recent years. With the need for inspection activities to be carried out at multiple locations and in various orientations, the industry demand for portable testing devices is increasing. The demand for compact and lightweight devices, which enable easier examination, has been a key trend in the market. Innovation in manufacturing technologies is propelling the deployment of these products. Elimination of installation costs with the use of portable devices, which helps in reducing the total cost of ownership (TCO) of these devices, is further helping the manufacturers strengthen their economic position in the market. The oil & gas industry, which employs testing across the industry supply chain for gauging the structural integrity and for continuous monitoring of intricate structures of various sizes, like plates, tubes and drilling machines, is expected to be among the most dominant end-users for portable radiographic equipment.

DIRECT RADIOGRAPHY TO BE THE GROWTH ENGINE

What's leading the pack in digital radiography? Direct radiography is the fastest growing type of radiography with near double-digit growth rate as compared to the overall market. This segment is aided by advancements in hardware, such as tubes, sources, and detectors, as well as software improvements facilitating better user-friendliness and efficiency. The advantages of direct radiography, including shorter exposure times, real-time applications, use of recognition software, reduced inspection time, environmental concerns, portability, and increased dynamic range (enabling multiple thicknesses to be inspected in one shot), are driving their adoption across all industry verticals. Direct radiography equipment is offering guaranteed high ROI to customers, which is the biggest contributing factor for their growth. Significant market opportunity for direct radiography (includes real-time) exists in automotive and aerospace segments, which are witnessing very high growth rates, even exceeding that of the overall direct radiography market.